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Abstract—Air quality is currently arousing drastically
increasing attention from the governments and populace
all over the world. In this paper, we propose a heuristic
recurrent air quality predictor (RAQP) to infer air quality.
The RAQP exploits some key meteorology- and pollution-
related variables to infer air pollutant concentrations, e.g.
the fine particulate matter (PM2.5). It is natural that the
meteorological factors and air pollutant concentrations at
the current time have strong influences on air quality the
next adjacent moment, that is to say, there exist high cor-
relations between them. With this consideration, applying
simple machine learners to the current meteorology- and
pollution-related factors can reliably predict the air quality
indices at a time later. However, owing to the non-linear and
chaotic reasons, the above correlations decline with the
time interval enlarged. In such cases, it fails to forecast the
air quality after several hours by only using simple machine
learners and the current measurements of meteorology-
and pollution-related variables. To solve the problem, our
RAQP method recurrently applies the one-hour prediction
model, which learns the current records of meteorology-
and pollution-related factors to predict the air quality one
hour later, to then estimate the air quality after several
hours. Via extensive experiments, results confirm that the
RAQP predictor is superior to the relevant state-of-the-art
techniques and non-recurrent methods when applied to air
quality prediction.

Index Terms—Air quality prediction, meteorological fac-
tors, air pollutant concentrations, recurrent, regression

I. INTRODUCTION

RECENT decades have witnessed the quick urbanization
and industrialization, inevitably along with remarkably

and constantly rising air, water and food pollution, in many
regions, particularly in China. As compared with the problem
caused by polluted water and food which the folk may solve
by introducing more forceful tactics, such as adding larger
doses of the agent for sewage disposal, humans seem fairly
helpless when facing the ubiquitous polluted air. The ‘Great
Smog of London’, which killed thousands of persons in only
a few days, is still fresh in our memories. Also, it is worthy
to emphasize that it is generally accompanied with the high-
density crowded population in those rapidly developed areas.
Therefore how to validly prevent such a crowd of people from
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the danger of air pollution and guarantee them in good health
is highly concerned by the governments at the present time,
and evidently, this concern will be continually amplified since
treating air pollution is of extreme difficulty and it cannot be
totally resolved in a short time. With the above consideration,
an efficient and effective predictor to forecast the air quality
during the next several hours is eagerly desired, which will
substantially facilitate the decision-making of the government,
e.g., traffic restriction, toward reducing the exhaust emissions
discharged to the atmosphere.

One critical way to give rise to poor air quality is due to
the anthropogenic-caused particulate and gaseous emissions,
which typically include motor vehicles, industrial processes,
coal, oil and natural gas combustion, etc. [1]. The commonly
seen harmful air pollutants are composed of NO2, O3, CO,
and so forth. Beyond a certain concentration, the former two
pollutants are easy to bring about respiratory inflammation,
while, the third one might even damage blood and nervous
system and therefore cause the body death. Apart from those
above air pollutants, a growing number of attention has been
concentrated on the fine particulate matter (PM2.5), which is
a complicated air pollutant mixed with particles beneath the
aerodynamic diameters of 2.5 µm. Another similar pollutant,
called the inhalable particles (PM10), is composed of particles
with the aerodynamic diameters of 10 µm or smaller [2]. In
contrast to PM10, the governments and folks more focus on
PM2.5 since it is easier to invade and lodge deeply into the
lungs, and this undoubtedly leads the increased morbidity and
mortality to the public under the condition of chronic exposure
to high-concentration PM2.5.

We take PM2.5, one of the most concerned air pollutants,
for example. Which meteorological factors impact the PM2.5
concentration and how to influence remain under exploration.
To our best knowledge, it can be generally acknowledged that
the variation of PM2.5 concentration is jointly determined by
a series of meteorological factors. For instance, some critical
studies unveiled that the aerosol optical thickness (AOT) is
closely correlated with the PM2.5 concentration [3]–[5], even
nicely fitted with a simple linear model under some special
cases [6]. Regardless of from researches or experiences, an
apparent influence of high-concentration PM2.5 is to cause a
severe visibility decrease [7]–[9]. How typical meteorological
parameters, e.g. wind speed, relative humidity, temperature,
and so forth, affect the PM2.5 concentration was investigated
as well, and they were found to have fairly high positive or
negative correlations [10]–[14]. Besides, some recent studies
have shown that the majority of air pollutants are strongly
correlated with each other [15].

1



1551-3203 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2018.2793950, IEEE
Transactions on Industrial Informatics

Fig. 1: The proposed recurrent model for hourly predictions of air pollutants.

To unearth and model the complex non-linear relationship
of real-world processes, such as estimating the air quality, was
found to be a tough mission [16], [17]. One classical solution
relies on the process-based approaches, which are devoted to
modeling atmospheric and chemical processes encompassed
in the air pollutant production with some chemical transport
models (CTMs) [18]. Nonetheless, in this type of approaches,
there exists one critical problem that the CTMs are generally
too complicated to be modeled even though a huge massive
of detailed information, e.g. meteorology knowledge and gas
emissions inventories, can be available, let alone without the
information which is hard to be accessed in real applications.
To address this problem, another solution was proposed based
on data-driven statistical approaches, which resort to ground
monitoring measurements or satellite readings and therefore
modeling the air pollution process is not necessarily required
[19]. Under special conditions that a near-linear relationship
exists between meteorological factors and air quality predic-
tion, linear regression models can be adopted in those data-
driven approaches to contribute a good result [20]. However,
most real-world processes are non-linear, and thus advanced
non-linear regression models, e.g. neural network, are needed
to establish a mapping from input meteorological parameters
to the output air quality estimation. In some works [21]–[23],
non-linear regression models were demonstrated to be better
applied to air pollution modeling. In [24], the authors further
incorporated the linear regression model, neural network, and
persistence model together for accurately forecasting the daily
mean of PM2.5 concentrations on the US−Mexico border. In
recent works [25]–[27], several advanced machine learning
tools have been successfully applied to air quality prediction.
We will illustrate these models in the section of experimental
results since they are included for performance comparison.

In this paper, we attempt to use the meteorological factors
(MFs) and air pollutant concentrations (APCs) acquired at the
current moment to forecast the hourly estimations of APCs
numerous hours later. To solve the aforementioned problem,
we propose a general-purpose framework, which is capable of
amending the performance of simple learning-based models
or existing air quality prediction models to a sizable margin.
For illustration consider deploying the popular support vector
regressor (SVR) [28] to learn the presently MFs and APCs1.

1Other learning models or air quality predictors will be used to check
the effectiveness of the proposed framework. Please see Section III.

Via experiments, it can be observed that, in the short term,
the prediction performance is fairly good because the MFs
and APCs are closely correlated with APCs to be predicted,
whereas, the correlation drops promptly and drastically as the
time interval increases. Due to the weak correlation, directly
using the SVR to learn the predictions of APCs is unreliable.
Instead, we introduce a recurrent framework to address the
above problem and furthermore combine the framework and
SVR to develop a recurrent air quality predictor (RAQP).
Particularly, when the presently MFs and APCs are used to
predict the APCs after n hours (n > 1), we firstly predict
the MFs and APCs after 1 hour followed by utilizing the
1-h prediction model and 1-h predicted outputs of MFs and
APCs as the input to infer the MFs and APCs after 2 hours.
Recurrently implementing the aforesaid process until the n-h
MFs and APCs are estimated. Note that there must exist errors
between the intermediate outputs and the unknown truth inputs
because the 1-h prediction model cannot be 100% accurate,
which leads to the error accumulation and makes the 1-hour
prediction model unable to work. For this, we might as well
suppose the error is small enough to be ignored. In fact, a
better solution will be provided in the next paragraph. Fig. 1
illustrates the proposed framework: 1) learning the regression
modules between the MFs and APCs at the present time and
those after 1 hour; 2) recurrently using the 1-hour regression
modules trained above to estimate the MFs and APCs after
numerous hours.

Compared with the previous works, this paper has the two
main contributions. First, to the best of our knowledge, this
work is the first one that applies the recurrent strategy to air
quality prediction. The proposed recurrent-based RAQP model
is not only a predictor, but also provides a general-purpose
framework which is applicable to raising the performance of
simple learning-based models or existing air quality predictors.
Second, we are the first using the noised features (as labeled
in Fig. 1) when inferring the air quality. To specify, we add
100 randomly generated noise sets to the training feature set
and therefore make the training samples 100 times larger. By
manually injecting noise, the generalization of the regression
modules will be enhanced since the number of training sam-
ples is largely increased and meanwhile in real applications
the noises must be included in the measurements of MFs and
APCs obtained from instruments. Further, it deserves to stress
that the trained 1-h prediction model is immune to the errors
(even totally when the 1-h prediction model is near to perfect
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or the noise variance is large), so it can be directly used to
learn the intermediate outputs without leading to the serious
error accumulation.

The structure of the remainder of this paper is outlined as
follows. Section 2 introduces the proposed RAQP predictor.
In Section 3, the performance of the recurrent-based RAQP
model is compared with the state-of-the-art competitors and
non-recurrent methods. We conclude the paper in Section 4.

II. AIR QUALITY PREDICTION

Quality diagnosis and monitoring have long played critical
roles in typical industrial applications, which include power
systems [29], networks [30], [31], video technologies [32]–
[35], electric vehicles [36], etc, and the relevant subsequent
quality controlling and improvement have also attracted an
extensive scope of attention from the industrial society [37],
[38]. On the one hand, with the high-speed development of
scientific technology, particularly during the recent decades
when great achievements have been made in various kinds
of application scenarios, an increasing number of advanced
technologies are being applied to human health and longevity;
on the other hand, risingly wider range of pollution of air,
water and food is accompanied with the rapid urbanization
and industrialization, which is also highly concerned by the
governments and folks at the present time. Thus, an efficient
and effective air quality prediction model will be an urgent
and crucial task in the next few decades or longer.

A. Direct Prediction

The support vector machine (SVM) was firstly explored by
the AT&T Bell Laboratories for the purpose of classification,
and later on was further extended to SVR for the regression
problems [39]. Supposing a training date set S = {(x1, y1),
(x2, y2), ..., (xm, ym)}, where xi = [x1i , x

2
i , ..., x

n
i ]T ∈ Rn is

the i-th vector of feature inputs and yi ∈ R is the i-th real
target output. We can present the general form of the SVR
using a hyperplane function:

h(xi) = 〈α,X (xi)〉+ β (1)

where 〈·, ·〉 indicates the inner product; X (·) denotes a non-
linear function applied to the feature space; α and β stand for
the parameters to be determined based on the given feature
inputs and target output. Minimum flatness of the function h
can be transferred to minimizing the norm of ‖α‖22. In real
applications, the slack variables ζ and ζ∗ are supplemented to
account for some margin of the errors. Via the analysis above,
we can derive the convex optimization problem:

minimize
1

2
‖α‖22 + λ

m∑
i=1

(ζi + ζ∗i ) (2)

subject to

 〈α,X (xi)〉+ β − yi ≤ e+ ζi
yi − 〈α,X (xi)〉 − β ≤ e+ ζ∗i
ζi, ζ

∗
i ≥ 0, i = 1, 2, ...,m

where e is the error tolerance range of the approximating
function; λ represents a regularization parameter no less than
zero, used for regulating the flatness of the function h and

Fig. 2: Prediction accuracy of PM2.5 and O3 from T1 to T12.

tolerance limits of the error beyond e. The constraints above
guarantee that the majority of the data xi are located in the
tube |yi − 〈α,X (xi)〉 − β| ≤ e. Otherwise, if xi exceeds the
tube, an error ζ or ζ∗ will be yielded and minimized in the
objective function. In general, we minimize the regularization
term 1

2‖α‖
2
2 and the error term λ

∑m
i=1(ζi + ζ∗i ) to address

the under-fitting and over-fitting issues. We define the kernel
function K(xi,xj) = 〈φ(xi), φ(xj)〉, which is employed for
mapping the data x to a higher dimensional space. Here the
commonly used Radial Basis Function (RBF) kernel, denoted
as K(xi,xj) = exp(−γ ‖xi − xj‖2), is applied in our work.
Using the training samples, we expect to find the parameters
λ, e and γ and thus determine the regression model.

We roughly examine the performance of SVR-based direct
prediction model, which uses the records of MFs and APCs
at T0 to forecast the air quality indices from T1 to T12. T0
means an initial time and Tn (n > 1) means the n-th hour
after T0. We randomly divide the entire air quality prediction
dataset into two classes. One class contains 80% data for
training and the other contains the rest 20% data for testing.
We repeat the above process 100 times and use the popular
Pearson linear correlation coefficient (PLCC) to measure the
average prediction accuracy, as given in Fig. 2. Red and blue
dots respectively correspond to PM2.5 and O3. Larger PLCC
values indicate better prediction accuracy. More illustrations
regarding the testing dataset and how to compute the PLCC
index will be detailedly described in the next section. As can
be observed from Fig. 2, regardless of PM2.5 and O3, the
PLCC value dramatically decreases as the time interval grows.
This indicates that the direct strategy is good at short-term
predictions of air quality, whereas, it fails on mid- and long-
term predictions, which is very possibly because of the weak
correlations between the currently records of MFs and APCs
and the true values of APCs after a long term.

B. Recurrent Prediction

Aiming to address the problem mentioned above, in this
paper we propose a heuristic solution with a recurrent strategy
and the associated RAQP predictor. Note that, when the
time interval is small, i.e. as for short-term predictions, the
prediction performance can reach to a high level because
there exist strong correlations between the measurements of
the input MFs and APCs and the true values of APCs to
be predicted. Therefore, it is natural to associate a recurrent
strategy, to specify, which recurrently adopts the short-term
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prediction model to infer the mid- and long-term air quality
indices. The aforesaid strategy is not a naive and groundless
idea, but inspired from some classical industrial technologies
which have been widely used in numerous other application
fields. We take the compression technologies of, e.g., power,
circuit, acoustic, video, and heart rate signals for example.
We define that the values of a signal vector to be compressed
are respectively θi and θj at the Ti and Tj moments, where
j > i, Pj(θi) is the predicted value of θj based on θi, and
the difference between Pj(θi) and θj is εi→j . Supposing that
θ0 is known, the direct strategy for compressing a signal is to
estimate and save the error difference between Pi(θ0) and the
following θi, namely ε0→i, where i > 0. By comparison, the
recurrent-based compression technology, which predicts and
saves the difference between Pi+1(θi) and θi+1, i.e. εi→i+1,
where i starts from 0 until the whole signal ends, drastically
outperforms the direct strategy, because a signal value and its
predicted version based on the neighboring value are closely
correlated with each other and therefore

∑
i εi→i+1 is much

less than
∑

i ε0→i. The estimation of error difference in the
compression methods is similar to and can be extended to the
air quality estimation. Due to the high correlation during the
neighboring moments, the prediction models might reach to
the perfect 100% performance, i.e. εi→i+1 = 0 for ∀i, which
means that we can accurately predict the next-moment values.
Extended to the air quality estimation, the recurrent strategy is
the most reliable method under the condition that short-term
prediction models have the ideal 100% accuracy.

But, in most real applications, albeit the short-term models
between the two adjacent moments, its prediction performance
cannot achieve the perfect 100% due to several uncontrolled
factors. Note that, in the direct way, we just need to forecast
the APCs, whereas it also requires to predict the MFs (for
example, wind speed, which is jointed determined by lots of
complicated factors) in the recurrent strategy to be served as
the inputs for the subsequent predictions. In such case, the
imperfect short-term prediction models must bring about the
accumulation and diffusion of errors. Similarly, the recurrent-
based compression technologies, due to quantization etc, are
always imperfect and lossy, and thus during the compression,
what we really save is not εi→j , but its quantized version of
ε̃i→j . This apparently leads to the accumulation and diffusion
of errors. To this end, we acquire the quantified difference
ε̃0→1 and the associated reconstructed θ̃1 based on the known
θ0. Next, we preserve ε̃0→1 and compute the quantified error
difference ε̃1→2 between θ2 and P2(θ̃1) since only θ̃1 can be
obtained during the decompression. Repeat the above steps
until the signal has been wholly compressed. On account of
the high correlation of two signal values at the neighboring
moments, the predicted P1(θ0) is quite close to θ1 and
thus ε0→1 approaches zero. Therefore, after quantization etc,
ε̃0→1 also approaches zero and the reconstructed θ̃1 ≈ θ1.
Then we derive that the predicted P2(θ̃1) is close to θ2,
and ε̃1→2 approaches zero and θ̃2 ≈ θ2. Likewise, we can
draw the following two results: 1) θ̃i ≈ θi, where i > 0;
2) ε̃i→i+1 is close to zero. Via the analyses above, we can
reasonably assume that the recurrent air quality prediction is
a better selection than the direct manner. Apart from the high

Fig. 3: Comparison of the direct and recurrent strategies for O3.

Fig. 4: Comparison of the direct and recurrent ways for PM2.5.

performance, we are able to derive the predicted air quality
indices at the middle moments as well.

In what follows, more concrete and quantified comparison
between the direct and recurrent air quality predictions will be
presented. We denote the prediction model based on the direct
way as Υj−c : fc → fj , which is differentiable and predicts fj
using fc, where the vector fj = {fj,1, fj,2, ..., fj,g} including
g meteorology- and pollution-related parameters. Considering
the fact that the prediction accuracy cannot be perfect, the
exact expression is fj = Υj−c(fc) + εj−c, where εj−c means
the error vector. On this basis, we can derive the subsequent
equations:


f1 = Υ1(f0) + ε1
f2 = Υ1(f1) + ε1

...
fj = Υ1(fj−1) + ε1

. (3)

Supposing a vector z, we attain the Taylor series of Υ1(z) at
z0(= z + ε):

Υ1(z) =
Υ1(z0)

0!
+

Υ′1(z0)

1!
ε+

Υ′′1(z0)

2!
ε2 + · · ·+R(z) (4)

where Υ′1(z0) and Υ′′1(z0) are the first- and second-order
derivatives; R(z) is an extremely small error term. The value
of ε is small for the short-term prediction model Υ1, that is
to say, εj (j ≥ 2) is quite close to zero, so we only preserve
the former two terms on the right side of (4):

Υ1(z) ≈ Υ1(z + ε) + Υ′1(z + ε)ε. (5)

4



1551-3203 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2018.2793950, IEEE
Transactions on Industrial Informatics

Then, we combine (3) and (5) to derive

fj = Υ1(fj−1) + ε1

= Υ1(Υ1(fj−2) + ε1) + ε1

≈ Υ2
1(fj−2)−Mj−2ε1 + ε1

= Υ2
1(Υ1(fj−3) + ε1)−Mj−2ε1 + ε1

≈ Υ3
1(fj−3)−Mj−3ε1 −Mj−2ε1 + ε1

...

≈ Υj
1(f0) + (1−

j−2∑
k=0

Mk)ε1 (6)

where Mk = Υ
(j−k−1)
1

′
(Υ1(fk) + ε1). When forecasting fj

from f0 (i.e. fj = Υj(f0) + εj), the predicted value is Υj(f0)
and the associated error is εj in the direct way, while in the
recurrent-based RAQP model, we obtain the predicted value
Υj

1(f0) and the error (1−
∑j−2

k=0Mk)ε1. As thus, comparing
the magnitude of εj and (1 −

∑j−2
k=0Mk)ε1 can lead to the

straightforward and reliable result about which one is better
between the direct and recurrent strategies. From Fig. 2, we
can find that the prediction performance at the T1 moment is
very close to 1, namely ε1 is extremely small. In this case,
we can derive that |εj | is larger than |(1−

∑j−2
k=0Mk)ε1| and

thus the recurrent strategy is superior to the direct manner.
Further, we in this paper introduce noise injection into the

feature inputs, which has been widely used for enhancing the
generalization capability of the trained regression models [40],
[41]. More concretely, we randomly generate 100 noise sets
and add them to the training feature set to make the training
samples 100 times larger. Note that, on one side, leveraging
noised features is able to remarkably increase the number of
training samples, and on the other side, it is closer to the real
application scenarios because noises must be involved in the
measurements of MFs and APCs obtained from instruments.
Both the above two sides can raise the regression module’s
generalization. In addition, it was also found that, due to the
use of noised features, the problem of error’s accumulation
and diffusion can be largely alleviated, so in the recurrent
strategy, the error (1−

∑j−2
k=0Mk)ε1 becomes ε1. According

to Fig. 2, |ε1| is much less than |εj | and thus the recurrent
strategy outperforms the direct way. Akin to Fig. 2, we roughly
compare the SVR-based direct prediction model with the
recurrent strategy using noised features, i.e. RAQP, in Figs.
3-4. Results validate the superiority of RAQP.

III. RESULTS AND DISCUSSIONS

This section will mainly examine the performance of our
proposed recurrent-based RAQP model and compare it with
the direct strategy and three prevailing air quality prediction
models.

Experimental Setup. The proposed RAQP model aims to
use the current MFs and APCs to infer the hourly estimations
of air quality. For training and examining our RAQP model,
we collected the hourly records of MFs and APCs at a small
village, about 100 kilometers away from Beijing, China. The
gathered MFs and APCs (and parts of their units) include time,

temperature (◦C), relative humidity (%), wind speed (m/s),
pressure (hPa), visibility (km), AOT, CO (ppm), NO2 (ppb),
O3 (ppb) and PM2.5 (µg/m3). Four APCs to be predicted are
respectively CO, NO2, O3 and PM2.5. We have successively
collected the data over a week, and finally attained 180 hours
of measurements. In this work we apply the two frequently
used evaluation measures, root mean square error (RMSE)
and PLCC, to check the effectiveness of the proposed RAQP
predictor: 1) RMSE measures the prediction consistency, as
defined as follows:

RMSE =

√√√√ 1

L

L∑
l=1

(al − bl)2 (7)

where al and bl are the predicted and observed values, and L
is the number of the elements in one vector; 2) PLCC reflects
the prediction accuracy of two vectors, which is defined by

PLCC =

∑L
l=1(al − ā)(bl − b̄)√∑L

l=1(al − ā)2
∑L

l=1(bl − b̄)2
(8)

where ā and b̄ are respectively the means of a and b. A
good prediction model is expected to achieve the value of
RMSE close to 0, and the value of PLCC close to 1. The
competitors consist of three prevailing air quality prediction
models. The first Voukantsis model was proposed in [25] by
combining two specific computational intelligence methods,
separately principal component analysis and artificial neural
networks. The second Vlachogianni method was developed
in [26] with the stepwise multiple linear regression. The last
Kaboodvandpour predictor was devised in [27] based on the
adaptive neuro-fuzzy inference system. In the comparison to
be illustrated later, all the models use the same features for
air quality prediction.

Performance Evaluation. For the direct strategy and the
three air quality prediction models compared, we randomly
separate the entire dataset into two teams. One team contains
80% data for training and the other contains the rest 20% data
for testing. We repeat the aforementioned process 100 times
and compute the PLCC and RMSE indices to measure the
average prediction performance from the T1 to T12 moments,
as illustrated in Tables I-II. When inferring the prediction
performance of the recurrent-based RAQP model, we first use
the noised features, which are created by adding 100 randomly
generated noise sets, to learn the 1-h prediction model, and
then repeatedly use the 1-h prediction model n times to infer
air quality at the Tn moment (i.e. after n hours). The results of
the proposed RAQP predictor can be also found in Tables I-II.
For easy comparison, we highlight the first- and second-rank
models with boldface and underline, respectively.

From Tables I-II, we are able to draw the following two
conclusions. First, we make a comparison between the direct
strategy and the proposed recurrent-based RAQP predictor.
In most situations, our RAQP model has lead to the greater
performance than the direct way. To specify, when inferring
the concentration of CO, the RAQP predictor performs better
from T1 to T4, while, as for NO2, O3 and PM2.5, the RAQP
model is constantly superior to the direct strategy from the
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TABLE I: PLCC comparison among the direct way, our RAQP model and three popular predictors. We bold the best-performing one.

APC Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Direct manner 0.9763 0.9712 0.9666 0.9670 0.9639 0.9622 0.9558 0.9452 0.9240 0.9222 0.9187 0.9157
RAQP (Pro.) 0.9931 0.9860 0.9780 0.9711 0.9615 0.9478 0.9303 0.9049 0.8728 0.8325 0.7546 0.6128

CO Voukantsis 0.9147 0.8973 0.8683 0.8382 0.8013 0.7578 0.7368 0.6883 0.6151 0.5730 0.5515 0.5498
Vlachogianni 0.9792 0.9620 0.9471 0.9423 0.9224 0.9105 0.8981 0.8770 0.8527 0.8329 0.8134 0.8064

Kaboodvandpour 0.9329 0.8868 0.8812 0.8810 0.8768 0.8737 0.8533 0.8384 0.8366 0.7833 0.7506 0.7457

Direct manner 0.9884 0.9807 0.9664 0.9533 0.9472 0.9300 0.8993 0.8882 0.8758 0.8477 0.8298 0.8228
RAQP (Pro.) 0.9950 0.9920 0.9886 0.9852 0.9804 0.9728 0.9647 0.9552 0.9446 0.9301 0.9104 0.8849

NO2 Voukantsis 0.9440 0.9183 0.8812 0.8459 0.8182 0.7789 0.7094 0.6788 0.6480 0.6087 0.5037 0.5008
Vlachogianni 0.9904 0.9800 0.9676 0.9536 0.9446 0.9262 0.8978 0.8854 0.8654 0.8434 0.8177 0.8158

Kaboodvandpour 0.9031 0.9029 0.9000 0.8928 0.8793 0.8545 0.8159 0.7936 0.7878 0.7183 0.7137 0.6677

Direct manner 0.9851 0.9675 0.9448 0.9365 0.9202 0.9102 0.9036 0.9035 0.8959 0.8859 0.8784 0.8647
RAQP (Pro.) 0.9933 0.9881 0.9845 0.9800 0.9719 0.9568 0.9412 0.9280 0.9160 0.9048 0.8886 0.8694

O3 Voukantsis 0.8823 0.8566 0.8263 0.8037 0.7590 0.7060 0.6292 0.6022 0.5287 0.4769 0.3889 0.3674
Vlachogianni 0.9834 0.9617 0.9390 0.9271 0.9173 0.9031 0.8975 0.8934 0.8775 0.8622 0.8403 0.8305

Kaboodvandpour 0.7701 0.7614 0.7352 0.7288 0.6824 0.6717 0.6630 0.6395 0.6340 0.6145 0.5528 0.5393

Direct manner 0.9893 0.9814 0.9762 0.9531 0.9445 0.9267 0.8861 0.8696 0.8490 0.8183 0.7808 0.7628
RAQP (Pro.) 0.9921 0.9896 0.9880 0.9857 0.9820 0.9748 0.9678 0.9597 0.9504 0.9397 0.9234 0.9027

PM2.5 Voukantsis 0.9378 0.9283 0.9136 0.8813 0.8627 0.8418 0.8005 0.7695 0.7467 0.7091 0.6656 0.6260
Vlachogianni 0.9893 0.9794 0.9719 0.9590 0.9471 0.9321 0.9084 0.8883 0.8687 0.8484 0.8189 0.8128

Kaboodvandpour 0.8289 0.8069 0.7680 0.7558 0.7404 0.7306 0.6953 0.6717 0.6546 0.6398 0.6143 0.5995

TABLE II: RMSE comparison across the direct way, our RAQP model and three popular predictors. We bold the best-performing one.

APC Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Direct manner 0.1882 0.2067 0.2202 0.2269 0.2332 0.2372 0.2559 0.2836 0.3186 0.3261 0.3395 0.3412
RAQP (Pro.) 0.0998 0.1425 0.1784 0.2042 0.2343 0.2709 0.3108 0.3604 0.4169 0.4835 0.6128 0.8763

CO Voukantsis 0.3763 0.4053 0.4385 0.4788 0.5369 0.5776 0.6091 0.6239 0.6674 0.6888 0.7155 0.7051
Vlachogianni 0.1776 0.2329 0.2717 0.2968 0.3290 0.3530 0.3899 0.4137 0.4434 0.4701 0.4931 0.4991

Kaboodvandpour 0.6303 0.6561 0.6582 0.6596 0.6663 0.6744 0.6799 0.6987 0.7258 0.7465 0.7656 0.7746

Direct manner 4.1528 5.3493 6.8445 8.0506 8.8996 10.252 11.544 12.377 13.600 14.761 15.534 15.917
RAQP (Pro.) 2.6389 3.3312 3.9785 4.5397 5.2179 6.1318 6.9807 7.8607 8.7273 9.7764 11.021 12.438

NO2 Voukantsis 9.8196 11.279 13.644 14.780 15.975 17.251 18.996 19.866 20.634 21.848 22.709 23.282
Vlachogianni 3.7322 5.2322 6.7695 7.9972 8.8784 10.197 11.497 12.424 13.616 14.529 15.173 15.621

Kaboodvandpour 16.630 17.002 17.889 18.435 18.529 18.655 18.788 19.190 19.229 19.476 20.274 21.485

Direct manner 2.5714 3.8535 4.9092 5.3734 6.0635 6.2456 6.3914 6.4499 6.5306 6.7123 7.2334 7.8643
RAQP (Pro.) 1.7030 2.2789 2.6188 2.9885 3.5571 4.4089 5.1343 5.6756 6.1356 6.5564 7.1286 7.7436

O3 Voukantsis 7.2805 7.8656 8.7747 9.2737 10.093 10.794 11.551 12.150 12.890 13.266 13.778 13.977
Vlachogianni 2.6477 4.1064 5.2081 5.6544 6.0855 6.5257 6.5790 6.7806 7.1891 7.5889 8.2691 8.5902

Kaboodvandpour 10.718 11.098 11.117 11.578 11.846 11.917 11.953 11.955 12.134 12.143 12.290 12.677

Direct manner 8.6753 11.057 13.222 17.037 20.232 23.374 26.830 30.015 31.824 34.477 35.957 38.534
RAQP (Pro.) 7.1740 8.2678 8.9187 9.7672 10.955 12.943 14.580 16.249 17.950 19.711 22.111 24.785

PM2.5 Voukantsis 22.470 23.662 25.492 29.234 30.698 33.309 36.485 38.155 40.516 41.993 44.050 46.663
Vlachogianni 8.9351 11.758 13.683 16.438 18.826 21.771 24.180 26.648 28.933 30.976 32.929 34.584

Kaboodvandpour 38.353 39.833 42.351 42.364 43.040 43.244 45.505 46.091 46.861 47.092 47.666 49.436

T1 to T12 moments. Second, the proposed RAQP predictor is
compared with the three state-of-the-art air quality prediction
models. Our RAQP predictor has also achieved encouraging
results. Particularly, the proposed RAQP model is better than
the three competitors for predicting the concentrations of four
air pollutants constantly, except that it is only inferior to the
Vlachogianni model for CO from T10 to T12. The reason that
the recurrent-based RAQP predictor is not always the best is
very possible due to the fact that the 1-h prediction model is
not perfect and therefore the accumulation and diffusion of
errors still appears. In other words, we may further improve
the performance of our RAQP model through introducing the
better-performance 1-h prediction model.

Furthermore, we more concern the prediction performance

during the next three to four hours, since as for daily trips,
this period is sufficient to make us go back homes or offices
once we know the air quality will go bad. Concretely, we just
pay attention to the PLCC index for O3 and PM2.5, which
are the two most significant air pollutants concerned by the
governments during recent years, and interested readers can
compute the variations of RMSE and other air pollutants. For
O3, the proposed RAQP prediction model has independently
resulted in about 4.2% and 4.6% relative performance gains
than the second-ranking model at the T3 and T4 moments. As
for PM2.5, the relative gains between our RAQP model and
the second-performer is around 1.2% and 2.8% at T3 and T4
respectively.

Statistical Comparison. We also implement the statistical

6



1551-3203 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2018.2793950, IEEE
Transactions on Industrial Informatics

TABLE III: Statistical significance comparison between the direct and recurrent strategies.

APC T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

CO +1 +1 +1 +1 0 -1 -1 -1 -1 -1 -1 -1
NO2 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
O3 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 0

PM2.5 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

TABLE IV: PLCC comparison between the original and recurrent-based Vlachogianni models. We highlight the best-performing one.

APC Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

CO Vlachogianni 0.9792 0.9620 0.9471 0.9423 0.9224 0.9105 0.8981 0.8770 0.8527 0.8329 0.8134 0.8064
R-Vlachogianni 0.9802 0.9672 0.9542 0.9432 0.9294 0.9151 0.8997 0.8781 0.8549 0.8321 0.8084 0.7860

NO2
Vlachogianni 0.9904 0.9800 0.9676 0.9536 0.9446 0.9262 0.8978 0.8854 0.8654 0.8434 0.8177 0.8158

R-Vlachogianni 0.9915 0.9814 0.9695 0.9555 0.9393 0.9194 0.8979 0.8750 0.8502 0.8243 0.7980 0.7720

O3
Vlachogianni 0.9834 0.9617 0.9390 0.9271 0.9173 0.9031 0.8975 0.8934 0.8775 0.8622 0.8403 0.8305

R-Vlachogianni 0.9857 0.9644 0.9420 0.9200 0.8973 0.8741 0.8561 0.8410 0.8265 0.8182 0.8092 0.8018

PM2.5 Vlachogianni 0.9893 0.9794 0.9719 0.9590 0.9471 0.9321 0.9084 0.8883 0.8687 0.8484 0.8189 0.8128
R-Vlachogianni 0.9895 0.9814 0.9729 0.9627 0.9490 0.9329 0.9150 0.8965 0.8748 0.8539 0.8320 0.8079

Fig. 5: The variations of influences on different air pollutants with the number of randomly generated noise sets changed.

significance comparison. T-test is used to examine wether two
sets of data are significantly different from each other [42].
The t-test is perhaps the most commonly used test under the
condition that the test statistic follows a normal distribution.
We apply the t-test to the PLCC indices, which are acquired
from the 100 times 80% train - 20% test trials, of the direct
and recurrent strategies for hourly predictions of four APCs
during the next 12 hours. Tables III lists the results of statistical
significance comparison. The null hypothesis means that the
average PLCC value for one model is equal to that for another
model with a confidence of 95%. The value of ‘0’ means that
the two strategies are statistically equivalent to each other, the
value of ‘+1’ means that the recurrent strategy is statistically
superior to the direct strategy, and the value of ‘-1’ means
that the recurrent strategy is statistically inferior to the direct
strategy. We bold all the ‘+1’ for the readers’ conveniences.
One can see that our RAQP model has delivered statistically
higher performance in the absolute majority of conditions.

Generality. The proposed RAQP predictor also provides a
general-purpose framework which is applicable to improving
the high-accuracy air quality prediction models toward better
performance. According to the analyses mentioned above, the
basic premise of using the recurrent framework lies in the
high performance of the 1-h prediction model. Comparing

the results reported in Tables I-II, the Vlachogianni model is
accordingly selected to check the generality of the proposed
recurrent framework. To specify, the 1-h Vlachogianni model
is established based on the noised features, followed by being
repeatedly used n times to forecast the air quality at the Tn
moment (i.e. after n hours). We tabulate the PLCC results
of the recurrent-based Vlachogianni (R-Vlachogianni) model
in Table IV, and simultaneously we also list the result of
the original Vlachogianni model and bold the better one for
easy comparison. It can be found that the recurrent framework
is capable of enhancing the Vlachogianni model’s accuracy,
especially for the short- and mid-term predictions such as at
the T2 and T3 moments. Additionally, we find that, for the
long-term prediction, the R-Vlachogianni model does not work
well, and this is mainly due to the reason that the insufficiently
high performance of the 1-h Vlachogianni model speeds up the
accumulation and diffusion of errors.

Influences of Parameters. How to learn reliably has long
been a critical open problem. In [43], the authors have put
forward a differential privacy based Thresholdout technology
to resolve the overfitting problem caused by the non-reusable
holdout. Inspired by several parts in the above publication,
the proposed RAQP model is proposed by introducing 100
randomly generated noise sets to improve the generalizability

7
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Fig. 6: Scatter plots of concentrations of different air pollutants vs. predictions of four competing models at the T4 moment.

when training the model. The influence of the number of
noise sets on the correlation performance is significant, since
it will reduce the computational complexity and raise the
implementation speed if less randomly produced noise sets are
exploited. With this concern, this paper checks the variations
of impacts when the number is assigned as 50, 100 and 200,
respectively. We plot the four scatter plots to illustrate the
results, as displayed in Fig. 5. One can readily find that, as the
number grows from 50 to 200, the performance is increased
but the change is not evident. So we may use a small amount
of randomly created noise sets in real applications. Further,
it is worthy to notice that our work dominantly concentrates
on providing a heuristic solution to air quality prediction, not
focuses on all the implementation details such as the number
of the added noise sets. The future work might be devoted to
exploring how to determine it faithfully.

Visualized Comparison. The scatter plot is a very impor-
tant and direct manner for performance comparison. Through
scatter plots, the readers can easily observe which model is
superior to others and why other models performed not so
well. Hence, we illustrate the scatter plots of concentrations
of four air pollutants (i.e., CO, NO2, O3 and PM2.5) versus
predictions of four competing models at the T4 moment, as
shown in Fig. 6. Via visualized straightforward comparison,
we can obviously find that the sample points of the proposed

RAQP predictor present higher convergence and linearity than
other prediction models tested. This reveals that our predictor
is able to yield more consistent predictions in line with the
truth values.

Discussions. We in this paper introduce a novel recurrent
strategy, which has been extensively used in many industrial
applications such as compression of acoustic, video and power
signals, into the prediction of concentrations of air pollutants.
We use 11 relevant features, encompassing time, temperature,
relative humidity, wind speed, pressure, visibility, AOT, CO,
NO2, O3 and PM2.5, to separately predict each of above 11
variables at the next moment. Based on the predicted results
of air pollutant concentrations at some time later, the standard
equation can be used to combine them and derive the overall
quality score [44]. By recurrently implementing the aforesaid
procedure, we are able to predict the air pollutant concentra-
tions and air quality index several hours later. Experimental
results prove the effectiveness of our recurrent-based RAQP
model as compared with the direct strategy and state-of-the-art
air quality prediction models. By comparison with the early
studies, the two major contributions have been made in our
work. First, to our best knowledge, we are the first to apply
the recurrent strategy to air quality prediction, which provides
not only a high-accuracy RAQP predictor but also a general-
purpose framework applicable to improving the performance

8
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of existing air quality predictors. Second, this work first
introduces the noised features into the air quality estimation,
which simultaneously enhances the generalization of models
and addresses the problem of error accumulation. However, the
proposed RAQP model is not always the best since there still
exists a gap between the 1-h prediction model and the ideal
100% performance. In the future, deep-based unsupervised
and supervised machine learning tools may be included to
better reveal the non-linear relationship between the input MFs
and APCs and output APCs, particularly modifying the 1-h
prediction model Υ1 and lowering ε1 and thus improving our
proposed RAQP predictor’s accuracy.

IV. CONCLUSION

In this paper, we have investigated into an emerging and
urgent problem−air quality prediction. Considering the non-
linear relationship between the meteorological factors and air
pollutant concentrations at the present moment and the air
quality indices several hours later, a heuristic recurrent-based
RAQP model has been proposed by recurrently using the 1-
h prediction model toward mid- and long-term predictions.
The proposed recurrent strategy fully exploits the advantage
of high correlations between the meteorology- and pollution-
related parameters during short time intervals to build a 1-h
prediction model, and meanwhile, avoids the disadvantage of
their weak correlations as the time interval increases to large
through using the recurrent strategy. Results of experiments
demonstrate the effectiveness of our proposed RAQP model
as compared with the direct strategy and state-of-the-art air
quality predictors, and further, confirm the generality ability
of the proposed recurrent framework. In addition to the high
performance, the predicted air quality indices at the middle
moments can be also derived in the recurrent strategy. The
future work will be devoted to improving the RAQP predictor
by modifying the 1-hour prediction model based on ensemble
learning and deep learning.
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